SBST401 - Utility Rates, Regulation and Economics

Document Type: District Master Course Outline
Proposal Type: New Course
Requester(s): David Krull Lauren Hadley
College: South
Origination Approved: 02/27/2014 - 1:38 PM

BASIC INFORMATION
Requester(s): David Krull
Lauren Hadley
College: South Seattle Community College
Division/Dept: Professional Technical
Dean: Holly Moore

COURSE INFORMATION
Proposed Course Number:
Prefix: SBST Number: 401
☐ Request a new Prefix
☐ This will be a common course

Full Title: Utility Rates, Regulation and Economics
Abbreviated Title: Utility Rates

Catalog Course Description:
Provides an overview of utility rate structure.

Course Length: 11 Weeks ☐ Request an Exception

Course Prerequisite(s):
Student must be enrolled in the BAS Sustainable Building Science Technology program or have instructor approval and have taken Financing Energy Efficiency.

Topical Outline:
1. Utility rates overview 2
2. Reading and understanding commercial gas and electric rate schedules 2
3. Energy intensity and identification of savings potential 2
4. Comparing different energy costs and options 2
5. Demand structure and billing analysis 2
6. Load shifting to minimize or avoid demand charges 2
7. Using submeters to identify and quantify loads 2
8. Low cost systems for energy and demand monitoring 2
9. Utility regulation or rate policy decision process 2
10. Using utility rate information to plan efficiency and control investments 2

Combined heat and power in the context of utility rates and regulation 2
COURSE CODING

Funding Source: 1..............State
Institutional Intent: 21..............Vocational Preparatory

This Course is a requirement for the following program(s):
(No Programs Selected)

☑ My Course Proposal is a requirement for a program not on this list
Program Title/Description/Notes:
BAS Sustainable Building Science Technology

Will this course transfer to a 4-year university? No
Is this course designed for Limited English Proficiency? No
Is this course designed for Academic Disadvantaged? No
Does this course have a Workplace Training component? Yes

CIP Code: 03.0198 ☐ Request Specific CIP Code
EPC Code: 177 ☐ Request Specific EPC Code

Credits:
Will this course be offered as Variable Credit? No
List Course Contact Hours
- Lecture (11 Contact Hours : 1 Credit) 22
- Lab (22 Contact Hours : 1 Credit) 0
- Clinical Work (33 Contact Hours : 1 Credit) 0
- Other (55 Contact Hours : 1 Credit) 0
Total Contact Hours 22
Total Credits 2

COLLEGE SUPPLEMENTAL

Proposed Quarter of Implementation: NA ☑ Request Provisional Exception
Spring 2014

Class Capacity: 30

Modes of Delivery: (Check all that apply)
☑ Fully On Campus
☑ Fully Online
☑ Hybrid
☐ Other Explanation:
Class Schedule Description:
Provides an overview of utility rate structure.

Student Learning Outcomes:

Computation
Use arithmetic and other basic mathematical operations as required by program of study

Apply quantitative skills for academic, and career purposes

Critical Thinking and Problem-Solving
Think critically in evaluating information, solving problems, and making decisions

Technology
Select and use appropriate technological tools for academic, and career tasks

Personal Responsibility
Uphold the highest standard of academic honesty and integrity

Respect the rights of others in the classroom, online and in all other school activities

Attend class regularly, complete assignments on time and effectively participate in classroom and online discussions, group work and other class-related projects and activities

Abide by appropriate safety rules in laboratories, shops and classroom

Information Literacy
Independently access, evaluate and select information from a variety of appropriate sources

Have knowledge about legal and ethical issues related to the use of information

Use information effectively and ethically for a specific purpose

Program Outcomes:

1. Systems – understand operations and systems unique to sustainable buildings.
2. Analysis – analyze, define and validate systems.
3. Critical thinking – identify, analyze and solve problems.
4. Technical – measure, diagnose and understand building system interactions.
6. Planning and design – calculate, develop and understand codes and standards for construction of sustainable energy efficient buildings.
7. Construction – understand components that drive the process of construction.
8. Building science – demonstrate working knowledge of building science and relationships across disciplines.
10. Computer skills – demonstrate ability to use commonly available instruments and interpret findings
11. Social value, ethics and need – create and maintain a professional environment based on values and ethics.
12. Data management – use computer programs used in building industries and quality assurance to make fact based decisions.

Course Outcomes / Objectives:
At the end of the course the student will:

1. Understand utility rate structures for residential and commercial customers and impact of PF systems.
2. Understand energy and demand charges.
3. Be capable of factoring utility energy and demand charges into energy efficiency and controls investments, programming and return on investment calculations.

Explain the student demand for the course and potential enrollment:
Course required for BAS Sustainable Building Science Technology program. All students will be enrolling in the course as a cohort. Course to be offered one time per academic year.

Explain why this course is being created:
Statement of need

- Employer demand
- Student demand
- Options for place-bound students

The SBST BAS degree program will address a critical gap in the current education system that has developed as this industry has evolved over the past five to 10 years. Traditional engineering, construction and architectural studies focus on the design of new buildings, rather than the complex and sophisticated systems that enable newly designed and retrofitted buildings to function. Individuals previously trained as facility managers do not have the level of expertise or systems knowledge to support these highly technical operations. Therefore, businesses are hiring engineers and spending months and even years retraining them to work in this capacity. Frequently these individuals do not want this type of work and leave when other more suitable opportunities present themselves. Individuals who choose to pursue a degree in the field of Sustainable Building Science Technology will not only have the specialized skills they need; they will be more stable employees.

What challenges, if any, do you foresee in offering this course:
none
This is to certify that the above criteria have all been met and all statements are accurate to the best of my knowledge.

Faculty involved in originating this program:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Krull</td>
<td>David Krull</td>
</tr>
<tr>
<td>1/1/0001</td>
<td>1/1/0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauren Hadley</td>
<td>Lauren Hadley</td>
</tr>
<tr>
<td>1/1/0001</td>
<td>1/1/0001</td>
</tr>
</tbody>
</table>

Dean:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holly Moore</td>
<td>Holly Moore</td>
</tr>
</tbody>
</table>

Results of SSCC Curriculum Coordinating Council Findings

Participating Faculty Response and Remarks

- [X] This course has not yet reached Committee Review

Chairman, Curriculum Coordinating Council:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date</td>
</tr>
</tbody>
</table>

Vice President for Instruction:

<table>
<thead>
<tr>
<th>Print Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary L Oertli</td>
<td>Gary L Oertli</td>
</tr>
<tr>
<td>2/27/2014</td>
<td>2/27/2014</td>
</tr>
</tbody>
</table>