COURSE OUTLINE
Revision: Mike Steffancin, February 2008

DEPARTMENT: Academic Programs
CURRICULUM: Engineering
COURSE TITLE: Electrical Circuits
COURSE NUMBER: ENGR& 204
TYPE OF COURSE: Academic Transfer
COURSE LENGTH: 1 quarter
CREDIT HOURS: 5
LECTURE HOURS: 55
LAB HOURS: 0
CLASS SIZE: 24
PREREQUISITES: PHYS& 222 and MATH& 152

COURSE DESCRIPTION:
Basic circuits and systems concepts. Resistors, sources, capacitors, inductors and operational amplifiers. Solutions of first and second order linear differential equations associated with basic circuit forms.

STUDENT LEARNING OUTCOMES ADDRESSED:

1. Computation – Students will use mathematics appropriate for their field of study during in-class activities and homework. This includes solving simultaneous linear equations, calculus and differential equations.
2. Communication – Students will get practice in both written and verbal communication through readings of technical lab documents and group activities.
3. Critical Thinking and Problem Solving – Students will learn to think critically to help them solve problems assigned as homework, group work and other in-class worksheets.
STUDENT LEARNING OUTCOMES ADDRESSED: (cont.)

4. Technology – Students will use calculators, computers and the Internet to investigate topics. Students will also build electric circuits and use ORCAD PSpice software and MATLAB to model circuits.
5. Information Literacy – Students will learn to access and evaluate information from a variety of sources including their book, the Internet and other class handouts.

GENERAL COURSE OBJECTIVES:

At the end of the course the student will be able to:

1. Identify linear systems and represent those systems in schematic form.
2. Apply Kirchhoff’s current and voltage laws and Ohm’s law to circuit problems.
4. Perform node and loop analyses and set these up in standard matrix format.
5. Analyze operational amplifier circuits.
6. Identify and model first and second order electric systems involving capacitors and inductors.
7. Predict the transient behavior of first and second order circuits.

TOPICAL OUTLINE:

I. Circuit variable. Voltage, current, power and energy.
II. Circuit elements. Voltage and current sources, resistance and Ohm’s Law, Kirchhoff’s Laws, analysis of circuits with dependent sources.
V. The operational amplifier. Terminals, terminal voltages and currents, inverting amplifiers, summing amplifiers, non-inverting amplifiers, difference amplifiers, non-ideal op amps.
VI. Inductance, capacitance and mutual inductance. The inductor, the capacitor, series and parallel combinations, mutual inductance.
TOPICAL OUTLINE: (cont.)

VII. Response of 1st order RL and RC circuits. Natural response of RL and RC circuits, step response of RL and RC circuits, general solution, sequential switching, unbounded response, the integrating amplifier. 10

Total hours 55

REVISED BY: Mike Steffancin
DATE: February 2008

ENGR& 204
Course Prefix and Number: ENGR& 204
Course Title: Electric Circuits

<table>
<thead>
<tr>
<th>SLO #</th>
<th>Included in Course Objective Number</th>
<th>SSCC Student Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO 1.1</td>
<td>1-7</td>
<td>Communication - Read and listen actively</td>
</tr>
<tr>
<td>SLO 1.2</td>
<td>1-7</td>
<td>Communication - Speak and write effectively</td>
</tr>
<tr>
<td>SLO 2.1</td>
<td>1-7</td>
<td>Computation - Use mathematical operations</td>
</tr>
<tr>
<td>SLO 2.2</td>
<td>1-7</td>
<td>Computation - Apply quantitative skills</td>
</tr>
<tr>
<td>SLO 2.3</td>
<td>1-7</td>
<td>Computation - Identify, interpret, and utilize higher level mathematical and cognitive skills</td>
</tr>
<tr>
<td>SLO 3.1</td>
<td>1-7</td>
<td>Human Relations - Use social interactive skills to work in groups effectively</td>
</tr>
<tr>
<td>SLO 3.2</td>
<td>1-7</td>
<td>Human Relations - Recognize the diversity of cultural influences and values</td>
</tr>
<tr>
<td>SLO 4.1</td>
<td>1-7</td>
<td>Critical Thinking and Problem Solving -</td>
</tr>
<tr>
<td>SLO 5.1</td>
<td>1-7</td>
<td>Technology - Select and use appropriate technological tools</td>
</tr>
<tr>
<td>SLO 6.1</td>
<td>1-7</td>
<td>Personal Responsibility - Be motivated and able to continue learning and adapt to change</td>
</tr>
<tr>
<td>SLO 6.2</td>
<td>1-7</td>
<td>Personal Responsibility - Value one's own skills, abilities, ideas and art</td>
</tr>
<tr>
<td>SLO 6.3</td>
<td>1-7</td>
<td>Personal Responsibility - Take pride in one's work</td>
</tr>
<tr>
<td>SLO 6.4</td>
<td>1-7</td>
<td>Personal Responsibility - Manage personal health and safety</td>
</tr>
<tr>
<td>SLO 6.5</td>
<td>1-7</td>
<td>Personal Responsibility - Be aware of civic and environmental issues</td>
</tr>
<tr>
<td>SLO 7.1</td>
<td>1-7</td>
<td>Information Literacy - Access and evaluate information</td>
</tr>
<tr>
<td>SLO 7.2</td>
<td>1-7</td>
<td>Information Literacy - Use information to achieve personal, academic, and career goals, as well as to participate in a democratic society</td>
</tr>
</tbody>
</table>

PREPARED BY: Mike Steffancin
DATE: May 2008